A Statistical Classification of Cryptocurrencies

Daniel Traian Pele, Niels Wesselhöfft, Wolfgang K. Härdle, Yannis Yatracos, Michalis Kolossiatis

International Research Training Group 1792 Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin

Department of Statistics and Econometrics Bucharest University of Economic Studies

Department of Mathematics and Statistics University of Cyprus, Nicosia

Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

Genus differentia approach

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Figure: Genus differentia approach in biology

Genus differentia approach

Figure: Genus differentia approach in finance

Aim of classification

Genotypic differentiation

- Biology the change in DNA sequences.
- Finance the underlying process of price manifestation.
- Phenotypic differentiation
 - Biology classification based on behavior and features of a species.
 - Finance classification based on statistical features of the price series.

Motivation

Question: What defines cryptocurrencies?

- I Plato: man is an upright, featherless biped, with broad, fat nails.
- Aristotle: definition of a species consists of genus proximum and differentia specifica.
- Goal: Define cryptocurrencies in terms of their genus proximum and differentia specifica.
- Method: Find latent variables, to form groups of shared characteristics.
- E Finding: Synchronic evolution, i.e. asymptotic speciation.
- Implication: Cryptocurrencies are a different species in the ecosystem of financial instruments.

Outline

- 1. Motivation
- 2. Data and descriptives
- 3. Factor model
- 4. Explanation
- 5. Expanding window
- 6. Conclusion

Literature review

- Dyhrberg (2016): BTC has similarities to both GOLD and the USD, being in between a currency and a commodity.
- Baur et al. (2018): BTC volatility and correlation characteristics are distinctively different compared to GOLD and USD.
- Härdle et al. (2018): BTC, XRP, LTC, ETH returns exhibit higher volatility, skewness and kurtosis compared to GOLD and S&P500 daily returns.
- Zhang et al. (2018): Cryptocurrencies presents heavier tails and higher Hurst exponent than the classical assets.
- □ Liu et al. (2019) developed a three-factor model using the CAPM approach and showed that the cross-sectional expected cryptocurrency returns can be captured by three factors: the market factor, the size factor and momentum factor.

Data

- \odot Sample: n = 679 assets.
- New asset class
 - Cryptocurrencies: $n_1 = 150$
- Old asset classes
 - Stocks (S&P 500): n₂ = 496
 - Exchange rates: $n_3 = 13$ List
 - Commodities (Bloomberg Commodity Index): n₄ = 20 List
- Daily data from 01/02/2014 08/30/2019 (1426 trading days).

Statistical assessment

□ Return X is a r.v. with cdf F() from which p = 23 statistics are estimated.

 $\square \text{ Moments of order } k \in \mathbb{R}^+, \ \mu_k = \mathsf{E}\left\{\left(X - \mu\right)^k\right\}.$

• variance:
$$\sigma^2 = E\left\{\left(X - \mu\right)^2\right\}$$
;

• skewness: Skewness = $E\left\{(X-\mu)^3\right\}/\sigma^3$;

• kurtosis: Kurtosis =
$$E\left\{\left(X-\mu\right)^4\right\}/\sigma^4$$
.

 $\boxdot \text{ Tails: } \alpha \in \{0.005, 0.01, 0.025, 0.05, 0.95, 0.975, 0.99, 0.995\}.$

$$\begin{array}{ll} \bullet & Q_{\alpha} = \inf \left\{ x \in \mathbb{R} : \alpha \leq F(x) \right\}; \\ \bullet & CTE_{\alpha} = \begin{cases} \mathsf{E} \left\{ X \mid X < Q_{\alpha} \right\}, & \alpha < 0.5 \\ \mathsf{E} \left\{ X \mid X > Q_{\alpha} \right\}, & \alpha > 0.5 \end{cases} \end{array}$$

Scaling and memory parameters

- Alpha-stability Alpha-stability
- ARCH parameter (GARCH (1,1))
- ► GARCH parameter (GARCH (1,1))

Assets profile

Variable	Commodities	Cryptocurrencies	Exchange rates	Stocks
$\sigma^2 \cdot 10^3$	0.365	14.563	0.028	0.270
Skewness	0.245	0.723	-1.233	-0.520
Kurtosis	22.461	28.037	38.201	13.392
$Stable_{\alpha}$	1.721	1.410	1.714	1.711
$Stable_{\gamma}$	0.010	0.047	0.003	0.009
Q5%	-0.027	-0.159	-0.008	-0.025
Q2.5%	-0.034	-0.210	-0.010	-0.033
$Q_{1\%}$	-0.044	-0.296	-0.013	-0.044
Q0.5%	-0.054	-0.378	-0.015	-0.054
CTE _{5%}	-0.038	-0.250	-0.011	-0.038
CTE2.5%	-0.047	-0.319	-0.014	-0.047
CTE _{1%}	-0.060	-0.428	-0.017	-0.062
CTE0.5%	-0.073	-0.525	-0.021	-0.076
Q95%	0.026	0.169	0.008	0.024
Q97.5%	0.034	0.243	0.010	0.030
Q99%	0.046	0.364	0.013	0.040
Q99.5%	0.057	0.480	0.015	0.049
CTE95%	0.039	0.297	0.011	0.034
CTE97.5%	0.049	0.393	0.013	0.042
CTE99%	0.064	0.544	0.016	0.055
CTE99.5%	0.080	0.671	0.018	0.066
GARCH parameter	0.706	0.796	0.728	0.637
ARCH parameter	0.118	0.159	0.078	0.130

Factor analysis

- Estimate the correlation matrix for all variables.
- □ Factor extraction based on the correlation of the coefficients.
- Factor rotation.

Correlation matrix

Factor model

🖸 Linear Factor model

$$X = QF + \mu + \varepsilon, \ \varepsilon \sim G() \tag{1}$$

- > X is the initial matrix of p variables
- Q is a matrix of the non-random loadings
- F are the common k factors (k < p)
- \blacktriangleright μ is the vector of the means of initial p variables
- \blacktriangleright ε is a matrix of the random specific factors
- \blacktriangleright Random vectors F and U are unobservable and uncorrelated

Factors loadings and scree plot

Figure: Scree plot and factors loadings. **Q** SFA_cryptos

Factor rotation

Figure: Path diagram. **Q** FA_cryptos

1

Mapping of the factors

- 1. Tail factor 77% of the total variance
 - Alpha-stable parameters S_{α} , S_{γ}
 - Lower and upper quantiles
 - Conditional tail expectations
 - Variance
- 2. Moment factor 8% of the total variance
 - Skewness
 - Kurtosis
- 3. Memory factor 6% of the total variance
 - ARCH parameter
 - GARCH parameter

Tail factor vs Moment factor

Figure: Loadings (left) and scores (right) based on tail and moment factor. **Q** SFA_cryptos

Tail factor vs Memory factor

Figure: Loadings (left) and scores (right) based on tail and memory factor. **Q** SFA_cryptos

Moment factor vs Memory factor

Figure: Loadings (left) and scores (right) based on moment and memory factor. ${\bf Q}$ SFA_cryptos

Factor explanation

Classify between Cryptocurrencies and other asset classes
 Binary logistic regression for each factor F_k, k ∈ {1,2,3}

$$P(Y = 1) = \frac{\exp(\beta_0 + \beta_1 F_k)}{1 + \exp(\beta_0 + \beta_1 F_k)},$$

$$Y = \begin{cases} 1, & \text{if Cryptocurrency} \\ 0, & \text{if otherwise} \end{cases}$$
(2)
(3)

Factor explanation

Exogenous factor	Factor 1	Factor 2	Factor 3
Estimated β_1	15.679***	-0.030	-0.084
	(3.278)	(0.077)	(0.093)
$\widetilde{R^2}$	0.992	0.0003	0.002

Note: Standard errors in (); ** denotes significance at 95% confidence level.

$$\widetilde{R}^{2} = \frac{1 - \left\{\frac{L(\mathbf{0})}{L(\widehat{\beta})}\right\}^{\frac{2}{n}}}{1 - \left\{L(\mathbf{0})\right\}^{\frac{2}{n}}}$$
(4)

L(0) is the likelihood of the intercept-only model
 L(β̂) is the likelihood of the full model

Linear Discriminant Analysis

- Finding a projection that maximizes the separability between classes.
- Assumes Gaussianity with equal covariances.

Quadratic Discriminant Analysis

- Finding a projection that maximizes the separability between classes.
- Assumes Gaussianity with different covariances.

Figure: Quadratic Discriminant Analysis

5 - 4

Support Vector Machines

- Finding a projection that maximizes margin in a hyperplane of the original data.
- No parametric assumptions on the underlying probability distribution function.

K-means clustering

- Projection of the clusters on the 3D space extracted trough Factor Analysis.
- Each cryptocurrencies cluster was labeled with its leader in terms of market capitalization.

Figure: 3D. Q Cluster_cryptos

Maximum Variance Components Split

- These method have goals to separate, respectively, the components of a structure like the types of assets herein, and clusters defined as the components of a mixture distribution.
- They are based on an unusual variance decomposition in between-group variations.

Video

Video

- □ Expanding rolling window estimation
 - Starting window 2014-01-02 until 2016-10-231 (1/2 of the data)
 - Increases daily up to full window 2014-01-02 until 2019-08-30
 - Kernel density contour level 0.015
- □ Clusters converge over time

Synchronic evolution

Figure: Likelihood Ratios for the binary logistic model, estimated for the period 10/31/2016- 08/30/2019 CONV_cryptos

Conclusion

Financial perspective

- Main statistical difference between Cryptocurrencies and other asset classes: tail behavior.
- Moments and memory are of subliminal importance.
- Nonlinear classification with SVM provides proficient results for risk analysts and regulators.
- Cryptocurrencies are completely separated by the other types of assets, as proved by Maximum Variance Components Split method.
- Biological perspective
 - Speciation takes time to form distinct species, which potentially evolve further away from each other.
 - Cryptocurrencies establish themselves as unique asset classes.

A Statistical Classification of Cryptocurrencies

Daniel Traian Pele, Niels Wesselhöfft, Wolfgang K. Härdle, Yannis Yatracos, Michalis Kolossiatis

International Research Training Group 1792 Ladislaus von Bortkiewicz Chair of Statistics Humboldt–Universität zu Berlin

Department of Statistics and Econometrics Bucharest University of Economic Studies

Department of Mathematics and Statistics University of Cyprus, Nicosia

Yau Mathematical Sciences Center, Tsinghua University, Beijing, China

Exchange rates

▶ Data

- 1. EUR/USD Euro
- 2. JPY/USD Japanese Yen
- 3. GBP/USD Great Britain Pound
- 4. CAD/USD Canada Dollar
- 5. AUD/USD Australia Dollar
- 6. NZD/USD New Zealand Dollar
- 7. CHF/USD Swiss Franc
- 8. DKK/USD Danish Krone
- 9. NOK/USD Norwegian Krone
- 10. SEK/USD Swedish Krone
- 11. CNY/USD Chinese Yuan Renminbi
- 12. HKD/USD Hong Kong Dollar
- 13. INR/USD Indian Rupee

9-1

Commodities

▶ Data

- 1. WTI Crude oil USCRWTIC Index
- 2. Natural Gas NGUSHHUB Index
- 3. Brent oil EUCRBRDT Index
- 4. Unleaded Gasoline RBOB87PM Index
- 5. ULS Diesel DIEINULP Index
- 6. Live cattle SPGSLC Index
- 7. Lean hogs HOGSNATL Index
- 8. Wheat WEATTKHR Index
- 9. Corn CRNUSPOT Index
- 10. Soybeans SOYBCH1Y Index
- 11. Aluminum LMAHDY Comdty
- 12. Copper LMCADY Comdty
- 13 Zinc ZSDY Comdty
- 14. Nickel CKEL Comdty
- 15. Tin JMC1DLTS Index
- 16. Gold XAU Curncy
- 17. Silver XAG Curncy
- 18. Platinum XPT Curncy
- 19. Cotton COTNMAVG Index
- 20. Cocoa MLCXCCSP Index

Lévy-Stable distributions

 \Box Fourier transform of characteristic function $\varphi_X(u)$

$$S(X \mid \alpha, \beta, \gamma, \delta) = \frac{1}{2\pi} \int \varphi_X(u) \exp(-iuX) du$$

 \boxdot Characteristic function representation, 0 $< \alpha < 2, \alpha \neq$ 1

$$\log \varphi_X(u) = iu\delta - \gamma |u|^{\alpha} \left\{ 1 + i\beta \left(u/|u| \right) \tan \left(\alpha \pi/2 \right) \right\}$$
(5)

□ Stability or invariance under addition

 $n\log \varphi_X(u) = iu(n\delta) - (n\gamma)|u| \stackrel{lpha}{=} \{1 + i\beta (u/|u|) \tan (lpha \pi/2)\}$

 Limiting distribution of *n* i.i.d. stable r.v., 0 < α ≤ 2 GCLT (Gnedenko and Kolmogorov, 1954)

$$n^{-\frac{1}{\alpha}} \sum_{i=1}^{n} (X_i - \delta) \xrightarrow{\mathcal{L}} S(\alpha, \beta, \gamma, 0)$$
 (6)

Linear Discriminant Analysis

- $\ \ \, \square \ \ \, \mathsf{Let} \ \, X_i \sim \mathcal{N}(\mu_i, \Sigma_i) \ \, \mathsf{belonging} \ \mathsf{to} \ \mathsf{class} \ \ \, \underline{\omega}_i, \ \ \, \Sigma_i = \Sigma_j$
- \Box Project samples X onto a line $Y = w^{\top}X$
- □ Select the projection that maximized the separability
- Maximize normalized, squared distance in the means of the classes

$$w^* = rg\max_{w} rac{|w^{ op}(\mu_i - \mu_j)|^2}{s_i^2 + s_j^2},$$
 (7)

$$s_i^2 = \sum_{x_i \in \omega_i} (w^\top x_i - w^\top \mu_i)^2 = w^\top S_i w$$
(8)

□ Linear Discriminant of Fisher (1936)

$$w^* = S_W^{-1}(\mu_i - \mu_j), \ S_W = S_i + S_j$$
(9)

Support Vector Machines

 Given training data set D with n samples and 2 dimensions

$$D = (X_1, Y_1), \dots (X_n, Y_n),$$
$$X_i \in \mathbb{R}^2, \quad Y_i \in [0, 1]$$

 Finding a hyperplane that maximizes the margin

$$\min_{w,b} \frac{1}{2} \|w\|^2$$

s.t. $Y_i \left(w^\top X_i + b \right) \ge 1,$
 $i = 1, \dots, n$

Variance Component Split

⊡ Consider the groups $X_{(1)}, \ldots, X_{(i)}$ and $X_{(i+1)}, \ldots, X_{(n)}$ with averages, respectively, $\overline{X}_{[1,i]}$ and $\overline{X}_{[i+1,n]}$, i = 1, ..., n-1, then

$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}=\sum_{i=1}^{n-1}\frac{i(n-i)}{n^{2}}(\overline{X}_{[i+1,n]}-\overline{X}_{[1,i]})(X_{(i+1)}-X_{(i)}).$$
 (10)

∴ The relative contribution of the groups $X_{(1)}, ..., X_{(i)}$ and $X_{(i+1)}, ..., X_{(n)}$ in the sample variability:

$$W_{i} = W_{i}(X_{1}, \dots, X_{n}) = \frac{i(n-i)}{n} \frac{(\overline{X}_{[i+1,n]} - \overline{X}_{[1,i]})(X_{(i+1)} - X_{(i)})}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$
(11)

Index *I_n* = max{*W_i*, *i* = 1, ..., *n* − 1} determines two potential clusters or parts of a structure and is based on averages and inter-point distances.

Maximum Variance Component Split

- ∴ The Maximum Variance Component Split (MVCS) method compares known components of a structure, *e.g.* cryptocurrencies herein, with data splits for a set of unit projection directions \mathcal{D}_M usually determined by M positive equidistant angles of $[0, \pi]$; *e.g.* when r = 2 and M = 3 the angles used are $\pi/3, 2\pi/3, \pi$.
- ☑ When one of the data split along projection direction a coincides with a component of the structure we have complete separation of this component along a.
- \boxdot A set of projection directions \mathcal{D}_M can be

 $(\Pi_{l=1}^{r}\cos\theta_{l}, \ \sin\theta_{1}\Pi_{l=2}^{r}\cos\theta_{l}, ..., \ \sin\theta_{r-1}\cos\theta_{r}, \ \sin\theta_{r}), \qquad (12)$

where θ_l takes values in $\{\frac{m\pi}{M}, m = 1, ..., M\}, l = 1, ..., r$.

▶ MVCS

