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Motivation 2-1

Genus di�erentia approach

Figure: Genus di�erentia approach in biology
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Genus di�erentia approach

Figure: Genus di�erentia approach in �nance
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Aim of classi�cation

� Genotypic di�erentiation

I Biology - the change in DNA sequences.
I Finance - the underlying process of price manifestation.

� Phenotypic di�erentiation

I Biology - classi�cation based on behavior and features of a
species.

I Finance - classi�cation based on statistical features of the price
series.
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Motivation

� Question: What de�nes cryptocurrencies?

� Plato: man is an upright, featherless biped, with broad, fat nails.
� Aristotle: de�nition of a species consists of genus proximum and

di�erentia speci�ca.
� Goal: De�ne cryptocurrencies in terms of their genus proximum and

di�erentia speci�ca.
� Method: Find latent variables, to form groups of shared

characteristics.
� Finding: Synchronic evolution, i.e. asymptotic speciation.
� Implication: Cryptocurrencies are a di�erent species in the

ecosystem of �nancial instruments.
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Literature review

� Dyhrberg (2016): BTC has similarities to both GOLD and the
USD, being in between a currency and a commodity.

� Baur et al. (2018): BTC volatility and correlation
characteristics are distinctively di�erent compared to GOLD
and USD.

� Härdle et al. (2018): BTC, XRP, LTC, ETH returns exhibit
higher volatility, skewness and kurtosis compared to GOLD
and S&P500 daily returns.

� Zhang et al. (2018): Cryptocurrencies presents heavier tails
and higher Hurst exponent than the classical assets.

� Liu et al. (2019) developed a three-factor model using the
CAPM approach and showed that the cross-sectional expected
cryptocurrency returns can be captured by three factors: the
market factor, the size factor and momentum factor.



Data and descriptives 3-1

Data

� Sample: n = 679 assets.

� New asset class

I Cryptocurrencies: n1 = 150

� Old asset classes

I Stocks (S&P 500): n2 = 496
I Exchange rates: n3 = 13 List

I Commodities (Bloomberg Commodity Index): n4 = 20 List

� Daily data from 01/02/2014 - 08/30/2019 (1426 trading
days).

https://github.com/QuantLet/Genus_proximum_cryptos/blob/master/list.xlsx
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Statistical assessment

� Return X is a r.v. with cdf F () from which p = 23 statistics
are estimated.

� Moments of order k ∈ R+, µk = E {(X − µ)k}.
I variance: σ2 = E

{
(X − µ)2

}
;

I skewness: Skewness = E
{

(X − µ)3
}
/σ3;

I kurtosis: Kurtosis = E
{

(X − µ)4
}
/σ4.

� Tails: α ∈ {0.005, 0.01, 0.025, 0.05, 0.95, 0.975, 0.99, 0.995}.
I Qα = inf {x ∈ R : α ≤ F (x)};

I CTEα =

{
E {X | X < Qα} , α < 0.5

E {X | X > Qα} , α > 0.5

� Scaling and memory parameters
I Alpha-stability Alpha-stability

I ARCH parameter (GARCH (1,1))
I GARCH parameter (GARCH (1,1))
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Assets pro�le

Variable Commodities Cryptocurrencies Exchange rates Stocks

σ2 · 103 0.365 14.563 0.028 0.270
Skewness 0.245 0.723 −1.233 −0.520
Kurtosis 22.461 28.037 38.201 13.392
Stableα 1.721 1.410 1.714 1.711
Stableγ 0.010 0.047 0.003 0.009
Q5% −0.027 −0.159 −0.008 −0.025
Q2.5% −0.034 −0.210 −0.010 −0.033
Q1% −0.044 −0.296 −0.013 −0.044
Q0.5% −0.054 −0.378 −0.015 −0.054
CTE5% −0.038 −0.250 −0.011 −0.038
CTE2.5% −0.047 −0.319 −0.014 −0.047
CTE1% −0.060 −0.428 −0.017 −0.062
CTE0.5% −0.073 −0.525 −0.021 −0.076
Q95% 0.026 0.169 0.008 0.024
Q97.5% 0.034 0.243 0.010 0.030
Q99% 0.046 0.364 0.013 0.040
Q99.5% 0.057 0.480 0.015 0.049
CTE95% 0.039 0.297 0.011 0.034
CTE97.5% 0.049 0.393 0.013 0.042
CTE99% 0.064 0.544 0.016 0.055
CTE99.5% 0.080 0.671 0.018 0.066
GARCH parameter 0.706 0.796 0.728 0.637
ARCH parameter 0.118 0.159 0.078 0.130

Table: Assets pro�le
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Factor analysis

� Estimate the correlation matrix for all variables.

� Factor extraction based on the correlation of the coe�cients.

� Factor rotation.
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Correlation matrix
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Figure: Correlation matrix of the statistical estimates. SFA_cryptos

https://github.com/QuantLet/Genus_proximum_cryptos/tree/master/SFA_Cryptos
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Factor model

� Linear Factor model

X = QF + µ+ ε, ε ∼ G () (1)

I X is the initial matrix of p variables
I Q is a matrix of the non-random loadings
I F are the common k factors (k < p)
I µ is the vector of the means of initial p variables
I ε is a matrix of the random speci�c factors
I Random vectors F and U are unobservable and uncorrelated
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Factors loadings and scree plot
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Figure: Scree plot and factors loadings. SFA_cryptos

https://github.com/QuantLet/Genus_proximum_cryptos/tree/master/SFA_Cryptos
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Factor rotation

Figure: Path diagram. FA_cryptos

https://github.com/QuantLet/Genus_proximum_cryptos/tree/master/FA_cryptos
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Mapping of the factors

1. Tail factor - 77% of the total variance

I Alpha-stable parameters Sα, Sγ

I Lower and upper quantiles

I Conditional tail expectations

I Variance

2. Moment factor - 8% of the total variance

I Skewness

I Kurtosis

3. Memory factor - 6% of the total variance

I ARCH parameter

I GARCH parameter
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Tail factor vs Moment factor
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Figure: Loadings (left) and scores (right) based on tail and moment

factor. SFA_cryptos

https://github.com/QuantLet/Genus_proximum_cryptos/tree/master/SFA_cryptos
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Tail factor vs Memory factor
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Figure: Loadings (left) and scores (right) based on tail and memory

factor. SFA_cryptos

https://github.com/QuantLet/Genus_proximum_cryptos/tree/master/SFA_cryptos
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Moment factor vs Memory factor
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https://github.com/QuantLet/Genus_proximum_cryptos/tree/master/SFA_cryptos
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Factor explanation

� Classify between Cryptocurrencies and other asset classes

� Binary logistic regression for each factor Fk , k ∈ {1, 2, 3}

P(Y = 1) =
exp(β0 + β1Fk)

1 + exp(β0 + β1Fk)
, (2)

Y =

{
1, if Cryptocurrency

0, if otherwise
(3)



Explanation 5-2

Factor explanation

Exogenous factor Factor 1 Factor 2 Factor 3

Estimated β1 15.679*** -0.030 -0.084
(3.278) (0.077) (0.093)

R̃2 0.992 0.0003 0.002
Note: Standard errors in (); ** denotes signi�cance at 95% con�dence level.

R̃2 =
1−

{
L(0)

L(β̂)

} 2
n

1− {L(0)}
2
n

(4)

� L(0) is the likelihood of the intercept-only model

� L(β̂) is the likelihood of the full model



Explanation 5-3

Linear Discriminant Analysis

� Finding a projection that
maximizes the separability
between classes.

� Assumes Gaussianity with
equal covariances.
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Figure: LDA LDA



Explanation 5-4

Quadratic Discriminant Analysis

� Finding a projection that
maximizes the separability
between classes.

� Assumes Gaussianity with
di�erent covariances. -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
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Figure: Quadratic Discriminant
Analysis



Explanation 5-5

Support Vector Machines

� Finding a projection that
maximizes margin in a
hyperplane of the original
data.

� No parametric assumptions
on the underlying
probability distribution
function.
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Figure: SVM SVM



Explanation 5-6

K-means clustering

� Projection of the clusters
on the 3D space extracted
trough Factor Analysis.

� Each cryptocurrencies
cluster was labeled with its
leader in terms of market
capitalization.

Figure: 3D. Cluster_cryptos

https://github.com/QuantLet/Genus_proximum_cryptos/tree/master/Cluster_cryptos


Explanation 5-7

Maximum Variance Components Split

� These method have goals to
separate, respectively, the
components of a structure
like the types of assets
herein, and clusters de�ned
as the components of a
mixture distribution.

� They are based on an
unusual variance
decomposition in
between-group variations.

Figure: MVCS. VCS_cryptos
MVCS

https://github.com/QuantLet/Genus_proximum_cryptos/tree/master/VCS_cryptos


Video 6-1

Video

� Expanding rolling window estimation
I Starting window 2014-01-02 until 2016-10-231 (1/2 of the

data)
I Increases daily up to full window 2014-01-02 until 2019-08-30
I Kernel density contour level 0.015

� Clusters converge over time
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https://github.com/QuantLet/Genus_proximum_cryptos/tree/master/DFA_cryptos


Video 6-2

Synchronic evolution

Jul 2016 Jan 2017 Jul 2017 Jan 2018 Jul 2018 Jan 2019 Jul 2019 Jan 2020

Time

0

200

400

600

L
ik

e
li
h

o
o

d
 R

a
ti
o

Tail Factor

Jul 2016 Jan 2017 Jul 2017 Jan 2018 Jul 2018 Jan 2019 Jul 2019 Jan 2020

Time

700

710

720

L
ik

e
li
h

o
o

d
 R

a
ti
o

Moment Factor

Jul 2016 Jan 2017 Jul 2017 Jan 2018 Jul 2018 Jan 2019 Jul 2019 Jan 2020

Time

660

680

700

720

L
ik

e
li
h

o
o

d
 R

a
ti
o

Memory Factor

Figure: Likelihood Ratios for the binary logistic model, estimated for the
period 10/31/2016- 08/30/2019. CONV_cryptos

https://github.com/QuantLet/Genus_proximum_cryptos/tree/master/CONV_cryptos
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Conclusion

� Financial perspective

I Main statistical di�erence between Cryptocurrencies and other
asset classes: tail behavior.

I Moments and memory are of subliminal importance.
I Nonlinear classi�cation with SVM provides pro�cient results for

risk analysts and regulators.
I Cryptocurrencies are completely separated by the other types

of assets, as proved by Maximum Variance Components Split
method.

� Biological perspective

I Speciation takes time to form distinct species, which
potentially evolve further away from each other.

I Cryptocurrencies establish themselves as unique asset classes.
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Appendix 9-1

Exchange rates
Data

1. EUR/USD Euro

2. JPY/USD Japanese Yen

3. GBP/USD Great Britain Pound

4. CAD/USD Canada Dollar

5. AUD/USD Australia Dollar

6. NZD/USD New Zealand Dollar

7. CHF/USD Swiss Franc

8. DKK/USD Danish Krone

9. NOK/USD Norwegian Krone

10. SEK/USD Swedish Krone

11. CNY/USD Chinese Yuan Renminbi

12. HKD/USD Hong Kong Dollar

13. INR/USD Indian Rupee



Appendix 9-2

Commodities
Data

1. WTI Crude oil USCRWTIC Index

2. Natural Gas NGUSHHUB Index

3. Brent oil EUCRBRDT Index

4. Unleaded Gasoline RBOB87PM Index

5. ULS Diesel DIEINULP Index

6. Live cattle SPGSLC Index

7. Lean hogs HOGSNATL Index

8. Wheat WEATTKHR Index

9. Corn CRNUSPOT Index

10. Soybeans SOYBCH1Y Index

11. Aluminum LMAHDY Comdty

12. Copper LMCADY Comdty

13. Zinc ZSDY Comdty

14. Nickel CKEL Comdty

15. Tin JMC1DLTS Index

16. Gold XAU Curncy

17. Silver XAG Curncy

18. Platinum XPT Curncy

19. Cotton COTNMAVG Index

20. Cocoa MLCXCCSP Index



Appendix 9-3

Lévy-Stable distributions

� Fourier transform of characteristic function ϕX (u)

S(X | α, β, γ, δ) =
1

2π

∫
ϕX (u) exp(−iuX )du

� Characteristic function representation, 0 < α < 2, α 6= 1

logϕX (u) = iuδ − γ|u| α {1 + iβ (u/|u|) tan (απ/2)} (5)

� Stability or invariance under addition

n logϕX (u) = iu(nδ)− (nγ)|u| α {1 + iβ (u/|u|) tan (απ/2)}
� Limiting distribution of n i.i.d. stable r.v., 0 < α ≤ 2

GCLT (Gnedenko and Kolmogorov, 1954)

n−
1
α

n∑
i=1

(Xi − δ)
L−→ S(α, β, γ, 0) (6)

Statistical assessment



Appendix 9-4

Linear Discriminant Analysis

� Let Xi ∼ N(µi ,Σi ) belonging to class ωi , Σi = Σj

� Project samples X onto a line Y = w>X
� Select the projection that maximized the separability
� Maximize normalized, squared distance in the means of the

classes

w∗ = arg max
w

|w>(µi − µj)|2

s2i + s2j
, (7)

s2i =
∑
xi∈ωi

(w>xi − w>µi )
2 = w>Siw (8)

� Linear Discriminant of Fisher (1936)

w∗ = S−1W (µi − µj), SW = Si + Sj (9)

LDA



Appendix 9-5

Support Vector Machines

� Given training data set D
with n samples and 2
dimensions

D = (X1,Y1) , . . . (Xn,Yn) ,

Xi ∈ R2, Yi ∈ [0, 1]

� Finding a hyperplane that
maximizes the margin

min
w ,b

1

2
‖w‖2

s.t. Yi

(
w>Xi + b

)
≥ 1,

i = 1, . . . , n

Figure: SVM



Appendix 9-6

Variance Component Split

� Consider the groups X(1), . . . ,X(i) and X(i+1), . . . ,X(n) with

averages, respectively, X [1,i ] and X [i+1,n], i = 1, ..., n − 1, then

1

n

n∑
i=1

(Xi−X )2 =
n−1∑
i=1

i(n − i)

n2
(X [i+1,n]−X [1,i ])(X(i+1)−X(i)). (10)

� The relative contribution of the groups X(1), ...,X(i) and
X(i+1), ...,X(n) in the sample variability:

Wi = Wi (X1, . . . ,Xn) =
i(n − i)

n

(X [i+1,n] − X [1,i ])(X(i+1) − X(i))∑n
i=1

(Xi − X )2

(11)

� Index In = max{Wi , i = 1, . . . , n − 1} determines two potential
clusters or parts of a structure and is based on averages and
inter-point distances.



Appendix 9-7

Maximum Variance Component Split

� The Maximum Variance Component Split (MVCS) method
compares known components of a structure, e.g. cryptocurrencies
herein, with data splits for a set of unit projection directions DM

usually determined by M positive equidistant angles of [0, π]; e.g.

when r = 2 and M = 3 the angles used are π/3, 2π/3, π.

� When one of the data split along projection direction a coincides
with a component of the structure we have complete separation of
this component along a.

� A set of projection directions DM can be

(Πr
l=1

cosθl , sinθ1Πr
l=2

cosθl , ..., sinθr−1cosθr , sinθr ), (12)

where θl takes values in {mπM ,m = 1, ...,M}, l = 1, ..., r .

MVCS
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